

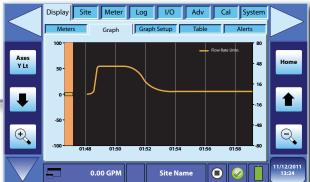
Hard Hat, Safety Glasses, DXN Portable.

Don't head out to the jobsite without the NEW DXN Portable Ultrasonic Flow Meter from Dynasonics. The DXN gives you unprecedented levels of portable ultrasonic flow measurement with a 7" color touchscreen interface that adapts to suit the needs of your application and a compact design that puts everything you need in one convenient over-the-shoulder bag, all while providing the level of accuracy you've come to expect from the leader in ultrasonics, Dynasonics.

The DXN is simply the best option for your next portable application, with true hybrid transit time and Doppler operation, an expandable

1GB data logger that takes readings over 100 times a second, and the ability to store site-specific parameters using plain English site descriptions. Take control of your toughest applications, add the DXN Portable to your flow measurement toolkit today.

Features and Benefits


- One portable meter does it all TRUE HYBRID instrument switches automatically between transit time and Doppler measurement as needed
- Take control of your reading with the industry's only advanced touch-screen interface featuring job-specific controls
- Always have your data on hand with usercustomizable site-specific parameters, 1 GB internal data logging, and USB connectivity for additional storage capability
- Take more accurate readings with superior measurement processing speed; takes over 100 flow readings per second
- Built to handle rigorous environments with an outdoor-readable FULL COLOR WVGA display and protective cover

Easy to read flow measurement screens

Multiple graphing options and advanced diagnostics

Full keyboard for more efficient data input

Complete Portable Flow Measurement Package

New DXN portable features easy to use plug and play connections

8635 Washington Avenue, Racine, WI 53406-3738 U.S.A. Tel: 262-639-6770 800-535-3569 US & Canada Fax: 800-732-8354 E-mail: info@dynasonics.com dynasonics.com

DYNASONICS is a registerd trademark of Racine Federated Inc. Specifications subject to change without notice.

©2011 Racine Federated Inc., all rights reserved. 11/11 Form No. 06-DXN-BR-00009

DXN Portable Ultrasonic Flow and Energy Meter

The DXN Portable Ultrasonic Flow Meter is a true hybrid ultrasonic flow meter, capable of measuring liquid flow with multiple technologies, including: Doppler, Transit Time and Liquid Thermal (Heat Energy) Flow. DXN is also compatible with a pipe wall thickness gauge, used to verify inside pipe diameter and ensure highly accurate ultrasonic measurements when piping details are unknown or unavailable.

The DXN has a number of advanced features that allow the user to obtain accurate readings while capturing flow surges and high-speed batch operations. DXN captures and records multiple application parameters at one time with an easy-to-use data logging function and provides the power to verify and troubleshoot permanent flow installations with ease.

Transit time flow meters measure the time difference between the travel time of an ultrasound wave going with the fluid flow and then against the fluid flow. This time difference is used to calculate the velocity of the fluid traveling in a closed-pipe system. The transducers used in transit time measurements operate alternately as transmitters and receivers. Transit time measurements are bi-directional and are most effective for fluids that have low concentrations of suspended solids.

Doppler flow meters operate by transmitting an ultrasonic wave from a transmitting transducer through the pipe wall and into the moving liquid. The sound wave is "reflected" by suspended particles or bubbles moving with the liquid and ultimately gathered by the receiving transducer. A frequency shift (Doppler effect) will occur that is directly proportional to the speed of the moving particles or bubbles. This shift in frequency is interpreted by the digital signal processor (DSP) and converted to a fluid velocity measurement.

Regardless of the method used to determine velocity, multiplying the pipe's cross sectional area by the fluid velocity produces a volumetric flow rate. The measurement also presumes that the pipe is completely full during the measurement cycle.

Energy Monitoring

Temperature measurements, when used in conjunction with flow measurement, can yield energy usage readings in the form of heat flow. Energy usage is calculated by multiplying the flow rate of the heat transfer fluid by the change of heat content in that fluid after it has done some kind of work, to find the net heat loss or gain.

An ultrasonic meter equipped with heat flow capabilities is designed to measure the rate and quantity of heat delivered or removed from devices such as heat exchangers. The instrument measures the volumetric flow rate of the heat exchanger liquid, the temperature at the inlet pipe and the temperature at the outlet pipe. By applying a scaling factor this heat flow measurement can be expressed in the units of your choosing: BTU, Watts, Joules, Kilowatts, etc.

Rate of Heat Delivery = Q \times (T $_{\rm in}$ – T $_{\rm out}$) \times C Where

 $\begin{array}{lcl} Q & = & \text{volumetric flow rate} \\ T_{\text{in}} & = & \text{temperature at the inlet} \\ T_{\text{out}} & = & \text{temperature at the outlet} \\ C & = & \text{specific heat of the liquid} \end{array}$

Part Number Construction

DXN Portable Transit Time/Doppler Ultrasonic Flow Meter

DXN S Model Power Cord Sensor & Hardware Kit **Options Carrying Case** Approvals P) Portable N) CE + General A) North American B) Basic - Small pipe and S) Standard -N) None standard pipe transit time Outer case with Safety, U.S., U) U.K., Singapore Canada, and EU transducers only shoulder strap E) Euro T) All Transit Time - Basic J) Japan kit plus large pipe C) China transducers H) Hybrid - Basic kit and Doppler transducers E) Energy - Basic kit and noninvasive RTDs F) Full - Includes all, transit

time, Doppler, RTDs and wall thickness gauge

Parts and Accessories

Power Cords/Cables

	<u>-</u>
Part Number	<u>Description</u>
D005-2109-013	North American plug (2 flat & 1 round prong; NEMA 5/15P)
D005-2109-015	UK plug (3 rectangular prongs; BS1363A)
D005-2109-016	Euro plug (2 round prongs; CEE7/7)
D005-2109-017	Japan plug (2 flat & 1 round, JIS8303, w/ 3-2 prong adapter)
D005-2109-014	China plug (3 flat prongs; GB2099)
D005-2129-020	Transit time Cables, 20' (6m)
D005-2129-050	Transit time Cables, 50' (15m)
D005-2129-100	Transit time Cables, 100' (30m)
D005-2130-020	Doppler Cables, 20' (6m)
D005-2130-050	Doppler Cables, 50' (15m)
D005-2130-100	Doppler Cables, 100' (30m)

Transducers (Heads with case)

Part Number	<u>Description</u>	Minimum Pipe O.D.	Maximum Pipe O.D.
D010-2200-002-C	DTTSU universal small pipe	.5" (12 mm)	2.4" (60.3 mm)
D071-0110-000-C	DTTN standard pipe	2" (50 mm)	98" (2500 mm)
D071-0110-200-C	DTTL large pipe	16" (400 mm)	120" (3050 mm)
D071-0112-001-C	DT94 Doppler transducer	1" (25 mm)	60" (1524 mm)

RTDs/Accessories/Spare Parts

Part Number	<u>Description</u>
D002-2007-004	0-200 °C RTD Silicone stretch tape
D002-2007-001	36 inch SS Hose clamp / transducer strap
D002-2007-005	72 inch SS Hose clamp / transducer strap
D002-2011-001	Acoustic couplant, grease (Dow 111), +150 °F (+65 °C) 5.3 oz. tube
D002-2011-011	Acoustic couplant, paste high temperature, 142 gram tube, +392 °F (+200 °C)
D010-3000-128	Industrial RTD Kit, 1000 Ohm, +392 °F (+200 °C); 20' (6m) cable
D010-3000-129	Building Automation RTD Kit, 1000 Ohm, +266 °F (+130 °C); 20' (6m) cable

¹ RTD Kits include: 2 RTDs, heat sink compound and installation tape.

System

Measurement Type:

Flow: Ultrasonic transit time and Doppler (reflection of acoustic signals); Hybrid operation.

 $\label{lem:pipe wall thickness:} \textbf{Ultrasonic transit time of acoustic signals.}$

Liquid thermal energy

Liquid Types:

Liquid dominant fluids.

Velocity Range:

Transit Time: Bi-directional to 40 FPS (12 MPS) **Doppler:** Uni-directional to 40 FPS (12 MPS)

Flow Rate Accuracy:

Transit Time: $\pm 1\%$ of reading or ± 0.01 FPS (0.003 MPS),

whichever is greater **Doppler:** 2% of full scale

Flow Sensitivity:

0.001 FPS (0.0003 MPS)

Repeatability:

 $\pm 0.1\%$ of reading

Temperature Accuracy:

Absolute 0.5 °F (1 °C); Difference 0.2 °F (0.5 °C); Resolution 0.02 °F (0.01 °C)

Measurement Update:

0.1 to 10 seconds update/filter rate. Transit Time, up to 50Hz high speed mode

Battery:

Internal 11.1V lithium ion battery, 75W-hr. Provides 6-9 hrs of continuous operation with battery and indefinitely on external power. Charging (0 to 40 $^{\circ}$ C), 12 hours while in use;

4 hours maximum powered off

Power Requirements:

10-30 VDC via-3-pin connector, 40W min; 3.6A resettable fuse **Supplies:** Desktop adapter: 100-240 VAC 50/60 Hz 50W 10V-18V: Cigarette lighter adapter: 5A fused

Power Cords:

North American plug (2 flat & 1 round prong; NEMA 5/15P); China plug (3 flat prongs; GB2099); Euro plug (2 round prongs; CEE7/7); U.K. plug (3 rectangular prongs; BS1363A) Japan Plug (2 flat & 1 round, JIS8303, w/ 3-2 prong adapter)

Display:

 800×480 WVGA Color Outdoor Readable Display; Gloved-operation resistive touch screen

Ambient Conditions:

Battery powered: -4 °F to +110 °F (-20 °C to +45 °C); Externally powered: -20 °F to +140 °F (-30 °C to +60 °C)

Storage Temperature:

Do not exceed +175 °F (80 °C)

Enclosure:

Water/Dust resistant [IP 64]

User Menu:

Windows .NET fully integrated user menu; Multi-language

Internal PC:

500MHz AMD PC, 256 MB RAM, 1GB user storage; Licensed Windows Embedded Standard 2009

Logging:

>300 sites stored in 1 GB; downloads to USB jump drive

Transducers

Pipe Sizes:

½" and larger; standard pipe tables built into User Interface

Housing Material:

DTTSU: CPVC, Ultem®, and anodized aluminum track system; **Connector:** Nickel-plated brass with Teflon® insulation

DTTN/DTTL/DT94 Doppler: CPVC, Ultem®;

Connector: Nickel-plated brass with Teflon® insulation

Pipe Surface Temperature:

DTTSU/DTTN/DTTL: -40 °F to +250 °F (-40 °C to +121 °C) **DT94 Doppler:** -40 °F to +250 °F (-40 °C to +121 °C)

Transducer Frequency:

DTTSU: 2MHz, DTTN: 1MHz, DTTL: 500kHz

DT94 Doppler: 625kHz

Cable Length:

Transit Time: 20 feet (6 meters) paired coaxial cable, BNC to BNC, **Doppler:** 20 feet (6 meters) paired coaxial cable, BNC to 4-pin

Diagnostics:

Open, Short, Nominal (transit time only)

Pipe Thickness:

Dual mode transducer with 6 feet (1.8 meters) of cable (BNC ends)

RTDs:

2x platinum 385, 1000 Ohm, 3-wire PVC jacketed cable; 20 feet (6 meters) cable standard with quick connector

Process Monitoring Inputs/Outputs

Connector:

15-pin high-density DSUB

Breakout Box:

.2" quick disconnect screw terminal; 15 pin to adapter box; 6 feet (1.8 meters) of cable (DSUB to DSUB connectors)

Inputs/Outputs:

Energy/Temperature:

2x RTDs PT1000 tab type; -122 °F to +570 °F (-85 °C to +300 °C) measurement range

Current Output:

4-20mA active/passive 1% accuracy

Sensor Supply:

14V @ 50mA max for powering current or voltage sensors

Digital Output:

Open collector, External pull-up Rate or Total pulse user selectable

Rate pulse: 0 to 1000Hz
Total pulse: 33mSec duration

Digital Input:

Totalizer reset, External pull-up

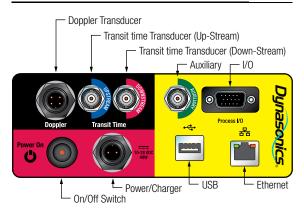
Auxiliary Inputs:

Voltage input. 0 - 5V or 0 - 10V, 1% accuracy

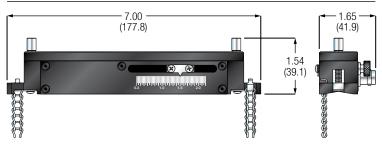
Software scaling and control 80k Ohms input impedance

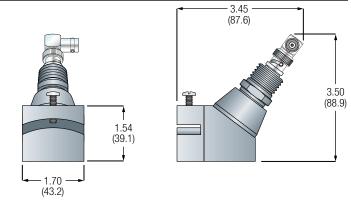
Voltage Output:

0-5V or 0-10V output voltage, 1% accuracy

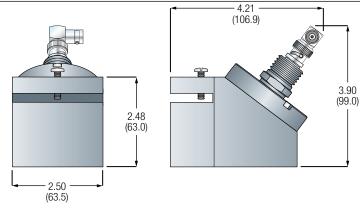

Software scaling and control

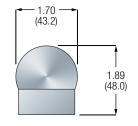
100 Ohms output impedance

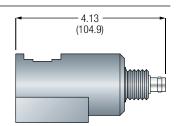

DXN Connection Panel


Transducer Pipe Size Requirements

	Minimum Pipe O.D.	Maximum Pipe O.D.
DTTSU	.5" (12 mm)	2.4" (60.3 mm)
DTTN	2" (50 mm)	98" (2500 mm)
DTTL	16" (400 mm)	120" (3050 mm)
DT94	1" (25 mm)	60" (1524 mm)




DTTN Transit Time Transducer



DTTL Transit Time Transducer

DT94 Doppler Transducer

8635 Washington Avenue, Racine, WI 53406-3738 U.S.A. Tel: 262-639-6770 800-535-3569 US & Canada Fax: 262-639-2267 800-732-8354 US & Canada E-mail: info@dynasonics.com

CSA is a registered trademark of the Canadian Standards Association.
UL is a registered trademark of Underwriters Laboratories.
ULTEM is a registered trademark of General Electric Co.
Specifications subject to change without notice.
©2012 Racine Federated Inc., all rights reserved.
02/12 Form No. 06-HYB-DS-00008

TEFLON is a registered trademark of E.I. duPont Nemours and Company.

dynasonics.com

DATA LOGGING (LOG) GROUP

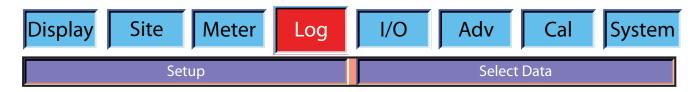


FIGURE 4.37 - LOG GROUP

Setup

The setup screen controls the selection of the **Logging Rate** and has a software button for starting and stopping logging sessions.

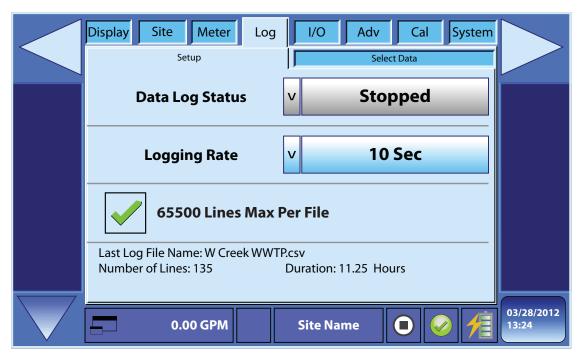


FIGURE 4.38 - DATALOGGING SETUP

Important: To enable datalogging a site from the **Site Group** ► **Create Page** must be either created or selected from previous site names. If a site is not chosen the datalogger start/stop control button will not function and the control will be "grayed out".

The logging rate entry tells the DXN how often to collect data points. The logger memory area has the capacity to store more than 300 individual files consisting of a maximum of 65,500 points per log file.

The amount of time the logger will collect data depends on the **Logging Rate** the DXN is programmed for. In general the logging time is calculated by dividing 65,563 by the number of data points recorded per minute.

Logging Time (Minutes) =
$$\frac{65,563}{\text{Number of Samples per Minute}}$$